Time Complexity Cheat Sheet



The first has a time complexity of O(N) and the latter has O(1). Python Regex Cheat Sheet. Writing to an excel sheet using Python. Know Thy Complexities! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them.

Common Data Structure Operations

Data StructureTime ComplexitySpace Complexity
AverageWorstWorst
AccessSearchInsertionDeletionAccessSearchInsertionDeletion
ArrayΘ(1)Θ(n)Θ(n)Θ(n)O(1)O(n)O(n)O(n)O(n)
StackΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
QueueΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Singly-Linked ListΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Doubly-Linked ListΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Skip ListΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n log(n))
Hash TableN/AΘ(1)Θ(1)Θ(1)N/AO(n)O(n)O(n)O(n)
Binary Search TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n)
Cartesian TreeN/AΘ(log(n))Θ(log(n))Θ(log(n))N/AO(n)O(n)O(n)O(n)
B-TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
Red-Black TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
Splay TreeN/AΘ(log(n))Θ(log(n))Θ(log(n))N/AO(log(n))O(log(n))O(log(n))O(n)
AVL TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
KD TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n)

Array Sorting Algorithms

Time Complexity Cheat SheetSheet
AlgorithmTime ComplexitySpace Complexity
BestAverageWorstWorst
QuicksortΩ(n log(n))Θ(n log(n))O(n^2)O(log(n))
MergesortΩ(n log(n))Θ(n log(n))O(n log(n))O(n)
TimsortΩ(n)Θ(n log(n))O(n log(n))O(n)
HeapsortΩ(n log(n))Θ(n log(n))O(n log(n))O(1)
Bubble SortΩ(n)Θ(n^2)O(n^2)O(1)
Insertion SortΩ(n)Θ(n^2)O(n^2)O(1)
Selection SortΩ(n^2)Θ(n^2)O(n^2)O(1)
Tree SortΩ(n log(n))Θ(n log(n))O(n^2)O(n)
Shell SortΩ(n log(n))Θ(n(log(n))^2)O(n(log(n))^2)O(1)
Bucket SortΩ(n+k)Θ(n+k)O(n^2)O(n)
Radix SortΩ(nk)Θ(nk)O(nk)O(n+k)
Counting SortΩ(n+k)Θ(n+k)O(n+k)O(k)
CubesortΩ(n)Θ(n log(n))O(n log(n))O(n)

When measuring the efficiency of an algorithm, we usually take into account the time and space complexity. In this article, we will glimpse those factors on some sorting algorithms and data structures, also we take a look at the growth rate of those operations.

Big

Big-O Complexity Chart

First, we consider the growth rate of some familiar operations, based on this chart, we can visualize the difference of an algorithm with O(1) when compared with O(n2). As the input larger and larger, the growth rate of some operations stays steady, but some grow further as a straight line, some operations in the rest part grow as exponential, quadratic, factorial.

Sorting Algorithms

Algorithm Time Complexity Cheat Sheet

In order to have a good comparison between different algorithms we can compare based on the resources it uses: how much time it needs to complete, how much memory it uses to solve a problem or how many operations it must do in order to solve the problem:

  • Time efficiency: a measure of the amount of time an algorithm takes to solve a problem.
  • Space efficiency: a measure of the amount of memory an algorithm needs to solve a problem.
  • Complexity theory: a study of algorithm performance based on cost functions of statement counts.
Sorting AlgorithmsSpace ComplexityTime Complexity
Worst case Best case Average case Worst case

Bubble Sort
O(1)O(n)O(n2)O(n2)
HeapsortO(1)O(n log n)O(n log n)O(n log n)
Insertion SortO(1)O(n)O(n2)O(n2)
MergesortO(n)O(n log n)O(n log n)O(n log n)
QuicksortO(log n)O(n log n)O(n log n)O(n log n)
Selection SortO(1)O(n2)O(n2)O(n2)
ShellSortO(1)O(n)O(n log n2)O(n log n2)
Smooth SortO(1)O(n)O(n log n)O(n log n)
Tree SortO(n)O(n log n)O(n log n)O(n2)
Counting SortO(k)O(n + k)O(n + k)O(n + k)
CubesortO(n)O(n)O(n log n)O(n log n)

Data Structure Operations

In this chart, we consult some popular data structures such as Array, Binary Tree, Linked-List with 3 operations Search, Insert and Delete.

Data StructuresAverage CaseWorst Case
SearchInsertDeleteSearchInsertDelete
ArrayO(n)N/AN/AO(n)N/AN/A
AVL TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
B-TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Binary SearchTreeO(log n)O(log n)O(log n)O(n)O(n)O(n)
Doubly Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Hash tableO(1)O(1)O(1)O(n)O(n)O(n)
Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Red-Black treeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Sorted ArrayO(log n)O(n)O(n)O(log n)O(n)O(n)
StackO(n)O(1)O(1)O(n)O(1)O(1)

Time Complexity Cheat Sheet Python

Growth of Functions

The order of growth of the running time of an algorithm gives a simple characterization of the algorithm’s efficiency and also allows us to compare the relative performance of alternative algorithms.

Sorting Time Complexity Cheat Sheet

Below we have the function n f(n) with n as an input, and beside it we have some operations which take input n and return the total time to calculate some specific inputs.

Big O Time Complexity Chart

Sheet

Time Complexity Calculator Online

n f(n)log nnn log nn22nn!
100.003ns0.01ns0.033ns0.1ns1ns3.65ms
200.004ns0.02ns0.086ns0.4ns1ms77years
300.005ns0.03ns0.147ns0.9ns1sec8.4×1015yrs
400.005ns0.04ns0.213ns1.6ns18.3min
500.006ns0.05ns0.282ns2.5ns13days
1000.070.1ns0.644ns0.10ns4×1013yrs
1,0000.010ns1.00ns9.966ns1ms
10,0000.013ns10ns130ns100ms
100,0000.017ns0.10ms1.67ms10sec
1’000,0000.020ns1ms19.93ms16.7min
10’000,0000.023ns0.01sec0.23ms1.16days
100’000,0000.027ns0.10sec2.66sec115.7days
1,000’000,0000.030ns1sec29.90sec31.7 years